231 research outputs found

    Selection Of A Novel Aptamer Against Vitronectin Using Capillary Electrophoresis And Next Generation Sequencing

    Get PDF
    Breast cancer (BC) results in ≃40,000 deaths each year in the United States and even among survivors treatment of the disease may have devastating consequences, including increased risk for heart disease and cognitive impairment resulting from the toxic effects of chemotherapy. Aptamer-mediated drug delivery can contribute to improved treatment outcomes through the selective delivery of chemotherapy to BC cells, provided suitable cancer-specific antigens can be identified. We report here the use of capillary electrophoresis in conjunction with next generation sequencing to develop the first vitronectin (VN) binding aptamer (VBA-01; Kd 405 nmol/l, the first aptamer to vitronectin (VN; Kd = 405 nmol/l), a protein that plays an important role in wound healing and that is present at elevated levels in BC tissue and in the blood of BC patients relative to the corresponding nonmalignant tissues. We used VBA-01 to develop DVBA-01, a dimeric aptamer complex, and conjugated doxorubicin (Dox) to DVBA-01 (7:1 ratio) using pH-sensitive, covalent linkages. Dox conjugation enhanced the thermal stability of the complex (60.2 versus 46.5°C) and did not decrease affinity for the VN target. The resulting DVBA-01-Dox complex displayed increased cytotoxicity to MDA-MB-231 BC cells that were cultured on plasticware coated with VN (1.8 × 10⁻⁶mol/l) relative to uncoated plates (2.4 × 10⁻⁶ mol/l), or plates coated with the related protein fibronectin (2.1 × 10⁻⁶ mol/l). The VBA-01 aptamer was evaluated for binding to human BC tissue using immunohistochemistry and displayed tissue specific binding and apparent association with BC cells. In contrast, a monoclonal antibody that preferentially binds to multimeric VN primarily stained extracellular matrix and vessel walls of BC tissue. Our results indicate a strong potential for using VN-targeting aptamers to improve drug delivery to treat BC

    Seasonal succession of pollinator floral resources in four types of grasslands

    Get PDF
    Pollinators are declining globally, and this decline in ecosystem services threatens the stability of agricultural and natural systems. Pollinators depend on a diversity of floral resources that are primarily found in uncultivated areas of agro‐ecosystems such as grasslands. Seasonal succession (the seasonal changes that occur in community composition and structure) of floral resources is an essential consideration for pollinator conservation within agro‐ecosystems. Different types of grasslands common within agricultural landscapes could be expected to differ in their seasonal succession of floral resources. Here we investigated how different types of grasslands important for pollinator conservation in the tallgrass prairie ecoregion (remnant prairies, reconstructed prairies, conservation grazed cattle pastures, and old fields) differ in their seasonal succession of floral resources by sampling the plant community every two weeks from 3 May through 4 October 2013. We found remnant prairies had greater richness of inflorescences when summed over the growing season, and that remnants were least similar to the other grassland types in terms of composition. Reconstructed prairies had high richness of inflorescences and exhibited the most similarity in composition to remnant prairies only during the middle of the growing season. Conservation grazed cattle pastures had more periods where turnover in composition from one survey to the next was low, indicated by the coefficient of variation in turnover throughout the season. Old fields had the lowest richness of inflorescences and were significantly different from reconstructed and remnant prairies

    Effects of fire and grazing on grasshopper sparrow nest survival

    Get PDF
    ABSTRACT Patch-burn grazing is a management framework designed to promote heterogeneity in grasslands, creating more diverse grassland structure to accommodate the habitat requirements of many grassland species, particularly grassland birds. Published studies on the effects of patch-burn grazing on passerines have been conducted on relatively large (430-980 ha pastures), contiguous grasslands, and only 1 of these studies has investigated the reproductive success of grassland birds. We assessed the effects of the patch-burn grazing and a more traditional treatment on the nesting ecology of grasshopper sparrows (Ammodramus savannarum) in small (<37 ha pastures) grasslands located in southern Iowa from May to August of 2008 and 2009. The study pastures were grazed from May to September and prescribed burns were conducted in the spring. We investigated the effects of treatments on clutch size and modeled grasshopper sparrow nest survival as a function of multiple biological and ecological factors. We found no difference in clutch size between treatments; however, we did find a reduction in clutch size for nests that were parasitized by brown-headed cowbirds (Molothrus ater). Constant daily survival rates were greater in patch-burn grazed pastures than in grazed-and-burned pastures (patch-burn grazed rate x ¼ 0:930 and grazed-and-burned rate x ¼ 0:907). Competitive survival models included year, stage of nest, nest age, and cool-season grass (csg) abundance within 5 m of the nest. Overall, csg abundance had the greatest effect on survival and had a negative influence. Although survival rates were highest in patch-burn grazed pastures, multiple factors influenced grasshopper sparrow survival. Nest survival rates for both treatments were relatively low, and variables other than treatment were more instrumental in predicting grasshopper sparrow survival. We recommend decreasing overall vegetation cover if increasing nesting habitat for grasshopper sparrows is a management goal. In addition, we recommend further investigation of heterogeneity management in fragmented landscapes to better understand how it affects biodiversity in relatively small management units that typify grassland habitats in the Midwest. ß 2011 The Wildlife Society

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Assessing Alternative Futures of Agriculture in Iowa, U.S.A.

    Full text link
    The contributions of current agricultural practices to environmental degradation and the social problems facing agricultual regions are well known. However, landscape-scale alternatives to current trends have not been fully explored nor their potential impacts quantified. To address this research need, our interdisciplinary team designed three alternative future scenarios for two watersheds in Iowa, USA, and used spatially-explicit models to evaluate the potential consequences of changes in farmland management. This paper summarizes and integrates the results of this interdisciplinary research project into an assessment of the designed alternatives intended to improve our understanding of landscape ecology in agricultural ecosystems and to inform agricultural policy. Scenario futures were digitized into a Geographic Information System (GIS), visualized with maps and simulated images, and evaluated for multiple endpoints to assess impacts of land use change on water quality, social and economic goals, and native flora and fauna. The Biodiversity scenario, targeting restoration of indigenous biodiversity, ranked higher than the current landscape for all endpoints (biodiversity, water quality, farmer preference, and profitability). The Biodiversity scenario ranked higher than the Production scenario (which focused on profitable agricultural production) in all endpoints but profitability, for which the two scenarios scored similarly, and also ranked higher than the Water Quality scenario in all enpoints except water quality. The Water Quality scenario, which targeted improvement in water quality, ranked highest of all landscapes in potential water quality and higher than the current landsape and the Production scenario in all but profitability. Our results indicate that innovative agricultural practices targeting environmental improvements may be acceptable to farmers and could substantially reduce the environmental impacts of agriculture in this region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49340/1/LE04Santel.pd

    Extinction Debt in Source-Sink Metacommunities

    Get PDF
    In an increasingly modified world, understanding and predicting the consequences of landscape alteration on biodiversity is a challenge for ecologists. To this end, metacommunity theory has developed to better understand the complexity of local and regional interactions that occur across larger landscapes. While metacommunity ecology has now provided several alternative models of species coexistence at different spatial scales, predictions regarding the consequences of landscape alteration have been done exclusively for the competition-colonization trade off model (CC). In this paper we investigate the effects of landscape perturbation on source-sink metacommunities. We show that habitat destruction perturbs the equilibria among species competitive effects within the metacommunity, driving both direct extinctions and an indirect extinction debt. As in CC models, we found a time lag for extinction following habitat destruction that varied in length depending upon the relative importance of direct and indirect effects. However, in contrast to CC models, we found that the less competitive species are more affected by habitat destruction. The best competitors can sometimes even be positively affected by habitat destruction, which corresponds well with the results of field studies. Our results are complementary to those results found in CC models of metacommunity dynamics. From a conservation perspective, our results illustrate that landscape alteration jeopardizes species coexistence in patchy landscapes through complex indirect effects and delayed extinctions patterns

    Assessing alternative futures for agriculture in Iowa, U.S.A.

    Full text link
    The contributions of current agricultural practices to environmental degradation and the social problems facing agricultural regions are well known. However, landscape-scale alternatives to current trends have not been fully explored nor their potential impacts quantified. To address this research need, our interdisciplinary team designed three alternative future scenarios for two watersheds in Iowa, USA, and used spatially-explicit models to evaluate the potential consequences of changes in farmland management. This paper summarizes and integrates the results of this interdisciplinary research project into an assessment of the designed alternatives intended to improve our understanding of landscape ecology in agricultural ecosystems and to inform agricultural policy. Scenario futures were digitized into a Geographic Information System (GIS), visualized with maps and simulated images, and evaluated for multiple endpoints to assess impacts of land use change on water quality, social and economic goals, and native flora and fauna. The Biodiversity scenario, targeting restoration of indigenous biodiversity, ranked higher than the current landscape for all endpoints (biodiversity, water quality, farmer preference, and profitability). The Biodiversity scenario ranked higher than the Production scenario (which focused on profitable agricultural production) in all endpoints but profitability, for which the two scenarios scored similarly, and also ranked higher than the Water Quality scenario in all endpoints except water quality. The Water Quality scenario, which targeted improvement in water quality, ranked highest of all landscapes in potential water quality and higher than the current landscape and the Production scenario in all but profitability. Our results indicate that innovative agricultural practices targeting environmental improvements may be acceptable to farmers and could substantially reduce the environmental impacts of agriculture in this region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43158/1/10980_2004_Article_5253979.pd

    Subgroup Economic Analysis for Glioblastoma in a Health Resource-Limited Setting

    Get PDF
    BACKGROUND: The aim of this research was to evaluate the economic outcomes of radiotherapy (RT), temozolomide (TMZ) and nitrosourea (NT) strategies for glioblastoma patients with different prognostic factors. METHODOLOGY/PRINCIPAL FINDINGS: A Markov model was developed to track monthly patient transitions. Transition probabilities and utilities were derived primarily from published reports. Costs were estimated from the perspective of the Chinese healthcare system. The survival data with different prognostic factors were simulated using Weibull survival models. Costs over a 5-year period and quality-adjusted life years (QALYs) were estimated. Probabilistic sensitivity and one-way analyses were performed. The baseline analysis in the overall cohort showed that the TMZ strategy increased the cost and QALY relative to the RT strategy by 25,328.4and0.29,respectively;andtheTMZstrategyincreasedthecostandQALYrelativetotheNTstrategyby25,328.4 and 0.29, respectively; and the TMZ strategy increased the cost and QALY relative to the NT strategy by 23,906.5 and 0.25, respectively. Therefore, the incremental cost effectiveness ratio (ICER) per additional QALY of the TMZ strategy, relative to the RT strategy and the NT strategy, amounts to 87,940.6and87,940.6 and 94,968.3, respectively. Subgroups with more favorable prognostic factors achieved more health benefits with improved ICERs. Probabilistic sensitivity analyses confirmed that the TMZ strategy was not cost-effective. In general, the results were most sensitive to the cost of TMZ, which indicates that better outcomes could be achieved by decreasing the cost of TMZ. CONCLUSIONS/SIGNIFICANCE: In health resource-limited settings, TMZ is not a cost-effective option for glioblastoma patients. Selecting patients with more favorable prognostic factors increases the likelihood of cost-effectiveness

    Growth inhibition of non-small cell lung cancer cells by AP-1 blockade using a cJun dominant-negative mutant

    Get PDF
    cJun, a major constituent of AP-1 transcription factor transducing multiple mitogen growth signals, is frequently overexpressed in non-small cell lung cancers (NSCLCs). The purpose of this study is to determine the effects of AP-1 blockade on the growth of NSCLC cells using a cJun dominant-negative mutant, TAM67. Transiently transfected TAM67 inhibited AP-1 transcriptional activity in NSCLC cell lines, NCI-H1299 (H1299), A549 and NCI-H520 (H520). The colony-forming efficiency of H1299 and A549 was reduced by TAM67, while that of H520 was not. To elucidate the effects of TAM67 on the growth of H1299, we established H1299 clone cells that expressed TAM67 under the control of a doxycycline-inducible promoter. In the H1299 clone cells, the induced TAM67 inhibited anchorage-dependent growth by promoting G1 cell-cycle block, but not by apoptosis. The induced TAM67 decreased the expression of a cell-cycle regulatory protein, cyclin A. TAM67 also inhibited anchorage-independent growth of these cells. Furthermore, TAM67 reduced growth of established xenograft tumours from these cells in nude mice. These results suggest that AP-1 plays an essential role in the growth of at least some of NSCLC cells
    corecore